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Description of the work 
Low-order (e.g. 4-node) shell finite elements with nonlinear Reissner-Mindlin kinematics (that assumes one 

inextensible director shell field) are the basic shell finite elements of any commercial finite element code. 

However, there has been still research going on in order to find an optimal 4-node nonlinear shell finite element 

of such kind. Mixed variational principles and their modifications have been used for that purpose. In this 

work, we compare several 4-node large rotations finite element formulations that have been recently published 

in [2]-[5], [8] and [9]. The formulations are based either on Hellinger-Reissner functional, on Hu-Washizu 

functional, or on modified versions of Hu-Washizu functional (e.g. ANS (Assumed Natural Strain) and EAS 

(Enhanced Assumed Strain) concepts) for the membrane, the bending and the shearing parts of the shell 

response. As for the material models, the St. Venant-Kirchhoff hyperelasticity is considered and the inelastic 

formulations are under development. Large rotations are described in the same manner for all formulations. 

The comparison is done by numerical experiments, i.e. by performing an extensive set of standard shell 

benchmark tests and also some newly proposed tests. Numerical experiments show that some of the 

formulations are considerable faster than others (since they allow for much larger load increments), and some 

are more robust. Surprisingly, for some tests, the formulations produce quite different qualitative results for 

the same mesh.  

 

 

 
𝑅 = 20, 𝐻 =

1

3
, thickness 𝑡ℎ = 1, 𝐸 = 𝐸𝑀 = 21000, 𝜈 = 0.2, Φ𝑓𝑖𝑛𝑎𝑙 = 2 𝜋 

 

Figure 1: Input data and response graph for the “snap-through of an elastic ring” example. 

 

Finite elements 
We considered the following large rotation formulations: additive update of the total rotation vector (marked 

as TotRot in the Figures 1 and 2), additive update of the incremental rotation vector (IncRot), and rotation 

update by using quaternions (KVKV). As for the 4-node elements, we considered the following formulations. 

(i) An EAS improvement of the membrane part with 4 (EASM4), 5 (EASM5) and 7 (EASM7) parameters [1], 

[2]. (ii) Hybrid Hu-Washizu formulation for membrane, bending and shear parts (HYWGHW) [4]. (iii) Hybrid 
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Hellinger-Reissner formulation for membrane, bending and shear parts (HYWGHR) [3]. (iv) Hybrid Hu-

Washizu formulation for membrane, bending and shear parts, enhanced with EAS formulation for the 

membrane part (HYWGHWEAS) [5]. (v) Hybrid Hellinger-Reissner formulation with Pian-Sumihara 

interpolation [6] for the membrane part (HYPSM) [6]. (vi) Hybrid Hellinger-Reissner formulation with Pian-

Sumihara interpolation for the membrane and bending parts (HYPSMB) [6]. (vii) MITC formulation [9]. For 

the interpolation of the transverse shear strains, the ANS concept [9] was applied for all formulations. 

Results 
In Figs. 1 and 2, we show results for two examples. It can be seen, that for these two examples, the elements 

produce quite different qualitative results for the same mesh. 

 

 

 
𝑅 = 30, 𝐻 = 1, thickness 𝑡ℎ = 1 , 𝐸 = 21000 𝜈 = 0.2, 𝑀 = 250, 𝑢𝑧 is displacement of node with applied moment   

 

Figure 2: Input data and response graph for the “jumping rope” example. 
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