ON THE SCREW DISLOCATION CONSIDERING SURFACE ENERGY: STRAIN-GRADIENT ELASTICITY VS. SURFACE ELASTICITY

V. A. Eremeyev 1,5 and E. C. Aifantis 2,3,4,5

¹Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland

²Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

³Michigan Technological University, Houghton, MI 49931, United States

⁴ITMO University, St. Petersburg, 197101, Russia

⁵Togliatti State University, Togliatti, 445020, Russia

e-mail: eremeyev.victor@gmail.com; mom@mom.gen.auth.gr

1. Introduction

Nowadays it is well-known that the surface phenomena are almost responsible for the mechanical and physical properties of micro- and nanostructured materials. In particular, they are responsible for the size-effect observed at the nano-scale. Among the theories of continuum which can describe such surface-related behavior it is worth to mention the Gurtin-Murdoch surface elasticity model [5] and the first and second strain gradient elasticity presented by Toupin [11], Mindlin [7,8], see also [9,10], and Aifantis [1,2]. The characterization of the surface elasticity within the strain-gradient elasticity was performed in [4,6] considering anti-plane surface waves. Here we compare the both models considering stress concentration in the vicinity of the linear defect such as a screw dislocation. We analyze here a deformation of a hollow circular cylinder with a screw dislocation considering the both theories of strain-gradient elasticity and of surface elasticity.

2. Strain-gradient elasticity

In what follows we consider infinitesimal deformations of an elastic solid which are described by the displacement field $\mathbf{u} = \mathbf{u}(\mathbf{x})$, where \mathbf{x} is the position vector. Strain energy density W is given by [7]

(1)
$$W = W_1 + W_2, \quad W_1 = \frac{1}{2}\mathbf{e} : \mathbf{C} : \mathbf{e}, \quad W_2 = \frac{1}{2}\nabla\mathbf{e} : \mathbf{A} : \nabla\mathbf{e}, \quad \mathbf{e} = \frac{1}{2}\left(\nabla\mathbf{u} + (\nabla\mathbf{u})^T\right),$$

where $\mathbf{C} = C_{ijkl}\mathbf{i}_i \otimes \mathbf{i}_j \otimes \mathbf{i}_k \otimes \mathbf{i}_l$ and Einstein's summation convention is used, $\mathbf{A} = A_{ijklmn}\mathbf{i}_i \otimes \mathbf{i}_j \otimes \mathbf{i}_k \otimes \mathbf{i}_l \otimes \mathbf{i}_m \otimes \mathbf{i}_n$ are the fourth- and six-order tensors of elastic moduli, respectively, \mathbf{i}_k , k = 1, 2, 3, are vectors of Cartesian orthonormal basis. For an isotropic strain gradient solid the elastic moduli tensors are given by [3]

(2)
$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right),$$

$$A_{ijklmn} = a_1 \left(\delta_{ij} \delta_{kl} \delta_{mn} + \delta_{ij} \delta_{km} \delta_{ln} + \delta_{ij} \delta_{kn} \delta_{lm} + \delta_{in} \delta_{jk} \delta_{lm} \right) + a_2 \left(\delta_{ij} \delta_{kn} \delta_{lm} \right),$$
(3)
$$+ a_3 \left(\delta_{ik} \delta_{jl} \delta_{mn} + \delta_{ik} \delta_{jm} \delta_{ln} + \delta_{il} \delta_{jk} \delta_{mn} + \delta_{im} \delta_{jk} \delta_{ln} \right) + a_4 \left(\delta_{il} \delta_{jm} \delta_{kn} + \delta_{im} \delta_{jl} \delta_{kn} \right),$$

$$+ a_5 \left(\delta_{il} \delta_{jn} \delta_{km} + \delta_{im} \delta_{jn} \delta_{kl} + \delta_{in} \delta_{jl} \delta_{km} + \delta_{in} \delta_{jm} \delta_{kl} \right),$$

where δ_{ij} is the Kronecker symbol, λ , μ , a_1 , a_2 , a_3 , a_4 , and a_5 are elastic moduli.

The equilibrium equation takes now the form

$$(4) \qquad \qquad \nabla \cdot (\boldsymbol{\sigma} - \nabla \cdot \boldsymbol{\tau}) = \mathbf{0},$$

where the tensors σ and τ are defined by $\sigma = \mathbf{C} : \mathbf{e}, \quad \tau = \mathbf{A} : \nabla \mathbf{e}$, which are the second-order stress tensor and third-order hyperstress tensor, respectively. Aifantis' strain-gradient model [1,2] utilizes more simple constitutive equation with one additional length-scale parameter ℓ such that $\tau = \ell^2 \nabla \sigma$. Eq. (4) should be complemented by proper boundary conditions which we omit here.

3. Surface elasticity

For an isotropic material the Gurtin-Murdoch model results in the classic constitutive equation in the bulk $W = W_1$ and an additional constitutive relation for the surface strain energy W_s [5]

$$W_s = \mu_s \boldsymbol{\epsilon} : \boldsymbol{\epsilon} + \frac{1}{2} \lambda_s (\operatorname{tr} \boldsymbol{\epsilon})^2, \quad \boldsymbol{\epsilon} = \frac{1}{2} \left(\mathbf{P} \cdot (\nabla_s \mathbf{u}) + (\nabla_s \mathbf{u})^T \cdot \mathbf{P} \right), \quad \mathbf{P} \equiv \mathbf{I} - \mathbf{n} \otimes \mathbf{n}$$

where λ_s and μ_s are the surface Lamé moduli, tr is the trace operator, ∇_s is the surface nabla operator, \mathbf{P} is the surface unit second-order tensor, \mathbf{n} is the unit vector of outer normal. For a free surface the static boundary condition takes the following form

$$\mathbf{n} \cdot \boldsymbol{\sigma} = \nabla_s \cdot \mathbf{s}, \quad \mathbf{s} \equiv \frac{\partial \mathcal{W}_s}{\partial \boldsymbol{\epsilon}} = \mu_s \boldsymbol{\epsilon} + \lambda_s \mathbf{P}(\mathrm{tr} \boldsymbol{\epsilon}).$$

Here s is the surface stress tensor.

4. Screw dislocation

In order to compare the both theories we consider the hollow circular cylinder of radius a with a screw dislocation. It is known that the strain-gradient elasticity and surface stresses affect the singularity near defects. Using the semi-inverse approach the deformation of a cylinder with a screw dislocation is given as a mapping [12]

(5)
$$r = r(R), \quad \phi = \Phi, \quad z = \frac{b}{2\pi}\phi + Z,$$

where r, ϕ , z and R, Φ , Z are the polar coordinates in the actual and reference placements, respectively, and b is the magnitude of the Burgers vector. For small deformations mapping (5) gives an example of an antisymmetric deformations such as in [4]. We discuss the solutions behaviour for $a \to 0$. We demonstrate that the both theories give similar qualitative results for the displacement amplitudes. Nevertheless, there are some quantitative differences which will be discussed during SOLMECH2018 in all details.

Acknowledgments Authors gratefully acknowledge the support of the Ministry of Education and Science of Russian Federation under Mega Grant Project "Fabrication and Study of Advanced Multi-Functional Metallic Materials with Extremely High Density of Defects" (No.14.Z50.31.0039) to Togliatti State University.

References

- [1] E. C. Aifantis. Update on a class of gradient theories. Mech. Mater., 35(3-6):259-280, 2003.
- [2] E. C. Aifantis. Gradient material mechanics: perspectives and prospects. Acta Mech., 225(4-5):999–1012, 2014.
- [3] F. dell'Isola, G. Sciarra, and S. Vidoli. Generalized Hooke's law for isotropic second gradient materials. *Proc. Roy. Soc. London A*, 465(2107):2177–2196, April 2009.
- [4] V. A. Eremeyev, G. Rosi, and S. Naili. Comparison of anti-plane surface waves in strain-gradient materials and materials with surface stresses. *Math. Mech. Solids*, DOI: 10.1177/1081286518769960:1–10, 2018.
- [5] M. E. Gurtin and A. I. Murdoch. A continuum theory of elastic material surfaces. *Arch. Ration. Mech. Anal.*, 57(4):291–323, 1975.
- [6] F. Jia, Z. Zhang, H. Zhang, X.-Q. Feng, and B. Gu. Shear horizontal wave dispersion in nanolayers with surface effects and determination of surface elastic constants. *Thin Solid Films*, 645(Supplement C):134 138, 2018.
- [7] R. D. Mindlin. Micro-structure in linear elasticity. Arch. Ration. Mech. Anal., 16(1):51–78, 1964.
- [8] R. D. Mindlin. Second gradient of strain and surface-tension in linear elasticity. *Int. J. Solids. Struct.*, 1(4):417–438, 1965.
- [9] R. D. Mindlin and N. N. Eshel. On first strain-gradient theories in linear elasticity. *Int. J. Solids Struct.*, 4(1):109–124, 1968.
- [10] R. D. Mindlin and H. F. Tiersten. Effects of couple-stresses in linear elasticity. *Arch. Ration. Mech. Anal.*, 11:415–448, 1962.
- [11] R. A. Toupin. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal., 11(1):385–414, 1962.
- [12] L. M. Zubov. Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin, 1997.