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1 . Introduction

The problem is demonstrated on the example of a system that includes the so-called ‘Gao beam,’ which is
modelled by a nonlinear beam equation. This study is motivated, in part, by the previous works on railway
systems, see, e.g., [1, 2]. First, the track was subjected to a set of massless forces applied with more or less
complex oscillators. Moreover, the dynamic properties and responses were not influenced by the additional
inertia of the wheel-sets, which are invariably present in transportation applications. Indeed, their mass is
about 750 kg per wheel and, thus, cannot be neglected. Second, the axial forces in rails were too simple.
Moreover, the temperature of the rails can vary by more than 40 ◦C during a day and more than 70 ◦C during a
year. Such variations in the temperature cause significant changes in the stresses and the mathematical models
for the structures must take these processes into account. Here, we address the first item, while the issue of
inclusion of thermal effects will be studies in the future. Such problems are of fundamental interest in railway
transportation Models for a Gao beam were derived and simulated in [3], see also the references therein. They
were investigated mathematically and computationally in [4].

2 . Formulation and solution

We describe a model for the motion of a point-mass on a rail that is assumed to be a Gao beam, which has been
constructed in [5]

(1) ρwtt + kwxxxx + γwtxxxx + (νp− aw2
x)wxx = ρf,

where here and below, the subscripts x and t denote partial derivatives, f is the density of applied distributed
force (per unit mass), ρ is the material density (mass per unit cross-sectional area), k = 2h3EY /3(1 − ν̃2),
ν = (1 + ν̃), and a = 3hEY ; ν̃ and EY are the Poisson ratio and the Young modulus, respectively. Also,
for mathematical reasons, we added a viscosity term γwtxxxx, with viscosity coefficient γ > 0, assumed to be
small. We consider the moving mass m and the external force f = f(x, t) subjecting a beam, with the traction
p = p(t) and the point load P = P (t). The mass position is ξ = ξ(t) the velocity v = v(t), and the initial data
w0 and v0; find the displacement field w = w(x, t) for x ∈ (0, 1) and t ∈ [0, T ], such that

ρwtt + δ(x− ξ)mwtt(ξ, t) + kwxxxx + γwtxxxx − (aw2
x − νp)wxx = ρf + δ(x− ξ)P,(2)

w(0, t) = wx(0, t) = 0, w(L, t) = wx(L, t) = 0, w(x, 0) = w0(x), wt(x, 0) = v0(x).

3 . Results

Let us compare the load trajectory in the case of increasing p factor (Figure 1). First we assume low values of
p to keep the structure in the bending range with a relatively low contribution of string vibration. We expect
gradual change of traces during the first passage and we look for a significant change in successive passages.
The first diagram (Figure 1a) depicts curves for p upto 1.0, while the second one exhibit traces for p upto
100.0. We notice that for low ranges of p the bending is the main phenomenon that occurs. For higher ranges
the wave phenomenon that appear in a string or in an axially loaded bar dominates. At moderate p the process
starts to elevate the follower point. This fact is visualized better in Figure 2. The second passage gives more
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Figure 1: Load trajectories for various ranges of p.
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Figure 2: Displacement w in time (a) and displacement w(x) at first steps of the process (b) (p=85).

flat surface in the diagram. Figure 2a shows the first stage of the passage through the span by the first load.
The wave propagation from the loaded point is visible. At the beginning the beam is waved according to spatial
parabolic terms of the differential equation. Wave effects are visible as well, especially as a reflection of waves
from the end x=L. In such a case presence of the nonlinear Gao term strongly influences the response. The next
Figure 2b is more contributing for better understanding the process. It shows the very early stage of the passage
through the span by the first load. The lifted part of the beam at x/L=0.45 and 0.55 is noticeable. Wave crests
have higher amplitudes than troughs. Moreover, careful sight at the beam axis at vt/L=0.0005 allows to notice
small positive deflection of the segment 0.6<x/L<1.

4 . Conclusions

The numerical simulations indicate that choosing the rail to be described by the Gao beam may be a better
description if one is interested in the rail oscillations. First, for beams with a low bending stiffness the Gao
beam is much more rigid than the Bernoulli-Euler beam. Second, a soft Bernoulli-Euler beam is characteristic
of lower eigenfrequency than a rigid one. In the case of the Gao beam this relation is reversed. Third, higher
external load increases the Gao beam features and strongly influences the frequency of the dynamic response.
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