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1. Introduction  
 

It is very important from a practical point of view, to develop new and accurate methods of measuring the 

rheological parameters (viscosity 𝜂, elasticity 𝜇 and density 𝜌) of plastics and polymers. New materials require 

new methods of measuring their rheological parameters. To evaluate the rheological parameters of plastics so 

far mechanical methods are used. These methods are cumbersome, outdated and destructive. The use of SH 

(Shear Horizontal) surface Love waves, to evaluate rheological parameters of polymers, does not possess these 

disadvantages. The objective of this work is to establish a mathematical model of propagation of Love waves 

in layered elastic waveguides covered on their surface with viscoelastic materials described by different 

viscoelastic models, i.e., Kelvin-Voigt, Newton and Maxwell models. To this end, we developed a complex 

dispersion equation for Love waves propagating in loaded waveguides and performed numerical calculations.  

 

2. Physical model  
 

Dispersion curves of the Love wave, i.e., the dependence of the phase velocity and attenuation on frequency, 

result from solution of the boundary value problem (called the direct Sturm-Liouville problem). Love waves 

propagate in layered structures, e.g., in elastic waveguides composed of an elastic surface layer rigidly bonded 

to an elastic substrate. The top of the surface layer 𝑥2 = −𝐷 is loaded with a viscoelastic medium, see Fig.1. 

Love waves, propagating in isotropic waveguides, have only one SH (Shear Horizontal) component of 

vibrations 𝑢3, polarized along the axis 𝑥3 that is perpendicular to the direction of propagation 𝑥1.  

 

 

3. Rheological models of viscoelastic media  

 

We chose 3 models for the viscoelastic media, i.e., Newton, Kelvin-Voigt, and Maxwell models, that load the 

surface of the Love wave waveguide. For time-harmonic waves, using constitutive equations for the 3 visco-

elastic media considered, we obtain the following 3 formulas for the complex shear moduli 𝑐44
𝐿  of elasticity:  

a) Newton model: (1)                  𝑐44
𝐿 = −𝑗𝜔𝜂 ; where: 𝜂 is the viscosity of the viscoelastic medium,  

b) Kelvin-Voigt model: (2)         𝑐44
𝐿 = 𝐺 − 𝑗𝜔𝜂 = 𝐺(1 − 𝑗𝑡𝑎𝑛𝛿) ; where: 𝐺 is the elastic shear modulus, and 

𝜂 is the viscosity of a viscoelastic medium, 𝑡𝑎𝑛𝛿 = 𝜔𝜂/𝐺, and  

c) Maxwell model: (3)                𝑐44
𝐿 = 𝐺

(𝜔𝜏)2

1+(𝜔𝜏)2 − 𝑗𝐺
𝜔𝜏

1+(𝜔𝜏)2 ; where: 𝜏 = 𝜂/𝐺 is the relaxation time.  

Fig.1. Lossless (elastic) Love wave 

waveguide (surface layer plus substrate) 

loaded at the surface 𝑥2 = −𝐷 with a 

lossy viscoelastic medium of the shear 

modulus G and viscosity 𝜂.  
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4. Complex Dispersion Equation for Love Waves  

 

The complex dispersion equation for Love waves that propagate in the waveguide structure from Fig.1 is:  

 

(4)                    sin(𝑞𝐷) ∙ {(𝜇1)2 ∙ 𝑞2 − 𝜇2 ∙ 𝑏 ∙ 𝜆1 ∙ 𝑐44
𝐿 } − cos(𝑞𝐷) ∙ 𝜇1 ∙ 𝑞 ∙ {𝜇2 ∙ 𝑏 + 𝜆1 ∙ 𝑐44

𝐿 } = 0              
 

where: complex pairs of quantities (𝜇2, 𝑏), (𝜇1, 𝑞), 𝑎𝑛𝑑 (𝜆1, 𝑐44
𝐿 ) correspond to the substrate, surface layer and 

the loading material, respectively, and 𝑗 = (−1)1 2⁄ . The above equation is a nonlinear transcendental algebraic 

equation for the complex propagation constant 𝑘 = 𝑘0 + 𝑗𝛼 as unknown. Solving equation 4 (the solution is a 

pair (𝑘0, 𝛼)) allows for determination of the phase velocity of the Love wave 𝑣 = 𝜔 𝑘0⁄  and the imaginary 

part 𝛼 of the complex wavenumber 𝑘 that represents the attenuation in 𝑁𝑝/𝑚 of the Love wave per unit length.  

 

5. Dispersion Curves of Love Waves  

 

Numerical calculations were performed for the waveguide structure shown in Fig.1. The substrate is Quartz 

(ST-cut 90º X) and the surface layer is PMMA poly(methyl methacrylate). The frequency of the Love wave 

varied from 1 to 1000 MHz. Thickness D of the surface layer equaled 0.1 mm. Losses in the PMMA layer and 

Quartz substrate were neglected. The only source of losses is the viscosity of the viscoelastic medium.  

Attenuation Curves  

In Figure 2 the attenuation of Love waves, in the range of frequencies; from 0 to 1000 MHz is presented.  

 

 

6. Conclusions  
 

The theoretical analysis and the results of numerical calculations presented in this paper reveal that the 

attenuation of the Love wave reflects directly the viscoelastic properties of the loading material described by 

Kelvin-Voigt, Newton and Maxwell models. Namely:  

a) in the low frequency limit 𝑡𝑎𝑛𝛿 ≪ 1 the attenuation of the Love wave due to the Maxwellian liquid 

and that due to the Newtonian liquid are almost the same (see Fig.2)  

b) in the high frequency limit 𝑡𝑎𝑛𝛿 ≫ 1 the attenuation of the Love wave due to the Kelvin-Voigt material 

and that due to the Newtonian liquid are almost identical (see Fig.2).  

The results of this study should be useful for designers and scientists working in geophysics, microelectronics 

(MEMS, biosensors, chemosensors), mechanics of materials and biomechanics.  
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Fig.2. Attenuation of the Love surface wave, 

propagating in a lossless elastic waveguide, 

loaded with 3 different types of lossy 

viscoelastic materials, i.e., Kelvin-Voigt, 

Newton and Maxwell. Low, medium and 

high frequency limits: 𝑡𝑎𝑛𝛿 ∈ [0.127 −

127], 𝐺 = 5 ∙ 104𝑃𝑎, 𝜂 = 1 𝑚𝑃𝑎𝑠.  
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